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Abstract

We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit dis-

cretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral

form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the discretization

of the evolution formula rather than on its form (integral, differential, etc.). A key feature of our approach is the in-

dependent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation

near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straight-

forward to extend to more space dimensions.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

This work is on numerical evolution of solutions to the wave equation,

r2

�
� o2

ot2

�
wð~x; tÞ; ð1Þ

along with appropriate initial and boundary conditions (BCs). We are particularly interested in obtaining a

high-order discretization – one that has a discretization error that decreases rapidly with discretization

density. There are three general ways to deal with the time evolution of such an equation:
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• use a discretization of the spatial derivatives along with a ordinary differential equation solver, e.g.

Runge–Kutta,

• discretize all the derivatives similarly, getting a system of equations that relate the field(s) at several

times, or
• use an exact relation that relates the field(s) at multiple times, and discretize the linear operators that

appear.

It seems natural to think that the last of these is most amenable to a high-order discretization. We use an

example of this, the well known Lax–Wendroff method, based on the identity

1

2
½wð~x;DtÞ þ wð~x;�DtÞ� ¼ LDtwð~x; 0Þ � cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
wð~x; 0Þ; ð2Þ

¼
X1
m¼0

ðDtÞ2mr2m

ð2mÞ! wð~x; 0Þ; ð3Þ

because a hierarchy of discretizations can be obtained by representing the linear operator LDt to the desired

order. It is clear that Eq. (2) gives an explicit formula for wð~x;DtÞ in terms of wð~x; 0Þ and wð~x;�DtÞ, meaning

that no linear equations need be solved to compute wð~x;DtÞ:

wð~x;DtÞ ¼ 2LDtwð~x; 0Þ � wð~x;�DtÞ: ð4Þ

The work of Alpert, Greengard, and Hagstrom (AGH) [1] was essentially concerned with various in-

tegral representations of LDt in one, two, and three space dimensions. These integral representations suggest

various approaches to discretization of LDt and AGH showed that these can be high-order and stable.

We adopt the point of view that what is really important is the discretization of LDt and not the
representation from which it is derived. After all, the various representations are equivalent in the sense

that they give the same result for any particular field wð~xÞ.
1.2. Present approach

The important features of our approach are

• a straightforward discretization of the operator LDt,

• a high-order discretization of a projection operator which enforces the desired BCs independently of the
discretization of LDt,

• a consistent discretization of the implicit identity operation on the first ‘‘time slice’’ wð~x;�DtÞ on the

right hand side of Eq. (4). (Simply put, we apply a high-order filter to wð~x;�DtÞ. This is essential to pre-

serve stability.)

• applicability to both structured and unstructured meshes. (Of course, efficiency of the method depends

on a regular mesh being used in as much of the modeled volume as possible.)

We march forward in time by alternating the application of the discretization of the evolution formula

(Eq. (4) with the identity operator exhibited)

wð~x; t þ DtÞ ¼ 2LDtwð~x; tÞ � L0wð~x; t � DtÞ; ð5Þ

with the boundary projection operation

wð~x; tÞ  Pbwð~x; tÞ: ð6Þ

The discretization of the identity operator L0 is a high-order low-pass filter. The notation is not arbitrary

– L0 is exactly the Dt! 0 limit of LDt, and likewise for their discretizations.
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It was not at all obvious to us that this plan would succeed in giving explicit stable evolution with the

attempted order of convergence of discretization error. Our message is that numerical investigations

demonstrate that, under some conditions, it does. Clearly, the approach deserves mathematical analysis,
more sophisticated than that of which we are capable, of those conditions.

We ignore in this work the method of enforcing radiation or absorbing BCs. This is, of course, crucial

for modeling of scattering problems, but involves issues that we consider totally separable from those

discussed here. Accordingly, our examples are wave propagation on finite regions with simple (Dirichlet

and Neumann) BCs. Our approach to discretization neither complicates nor simplifies the imposition of

absorbing or radiation BCs. It is, for example, compatible with the fast method of AGH [3].

Our method is illustrated in one space dimension in this note. Similar results in 2+ 1 dimensions have

been obtained and will be reported separately.
2. Bulk propagation and stability

2.1. High order discretization

We first consider propagation on a homogeneous regular lattice without boundaries. This illustrates the

discretization approach as well as affording a chance to apply the von Neumann method to analyze sta-
bility. The field w is discretized by tabulating its values on the spacetime lattice:

wmn � wðmDx; nDtÞ: ð7Þ

We wish to construct a high order discretization of the operator LDt, defined in Eq. (2). We do this by

requiring the discretization to be exact for a suitable set of functions, namely polynomials up to some

degree d. Clearly

LDt xk
� �

ð0Þ ¼ ðDtÞk k even;
0 k odd:

�
ð8Þ

The discretization of L is a set of 2M þ 1 numbers L̂mðDt=DxÞ:

ðLDtwÞðxÞ �
XM
m¼�M

L̂mðDt=DxÞwðxþ mDxÞ; ð9Þ

requiring

XM
m¼�M

L̂mðsÞmj ¼ bj �
sj j even
0 j odd

�
; 06 j6 d: ð10Þ

If 2M ¼ d this represents a square system of equations. However, we can (and usually must) allow

M > d=2 to achieve stability. Before we discuss the treatment of the underdetermined systems, we consider

the stability of the time evolution.
2.2. Stability analysis

Because the (discretized) propagation is invariant to translations in both space and time, we look for

solutions

wmn ¼ eiðkmþxnÞ; ð11Þ
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and find the ‘‘dispersion relation’’

eix ¼ âðk; sÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2ðk; sÞ � âðk; 0Þ

p
; ð12Þ

where

s � Dt
Dx

; ð13Þ
âðk; sÞ � L̂0ðsÞ þ 2
XM
m¼1

L̂mðsÞ cosðkmÞ: ð14Þ

Propagation is stable only if both

âðk; sÞ
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2ðk; sÞ � âðk; 0Þ

p ����6 1: ð15Þ

The stability condition motivates our approach to solving underdetermined equations for L̂mðsÞ. The
L̂mðsÞ are the coefficients of a Fourier series for âðk; sÞ. The requirement that the discretization be high-

order (exact for polynomials up to degree d) means that the first d þ 1 derivatives (including the zeroth) of

ojâðk; sÞ=okj at k ¼ 0 match those of the ‘‘true’’ a:

aðk; sÞ � cosðksÞ: ð16Þ

Trying to force too many derivatives of â to be correct at k ¼ 0 will cause the stability condition Eq. (15)

to be violated at larger k. What we want then is to have âðk; sÞ be a good approximation for small k and
generally small for k large enough that it is not a good approximation. We are thus led to minimize

1

2p

Z p

�p
dkâ2ðk; sÞ ¼ L̂2

0ðsÞ þ 2
XM
m¼1

L̂2
mðsÞ; ð17Þ

subject to the high-order constraints of Eq. (10).

2.3. Operator discretization

The minimization of Eq. (17) subject to the constraints of Eq. (10) is an elementary exercise in Lagrange

multipliers. The solution is

L̂m ¼
Xd
j¼0

kjmj; ð18Þ

where the kj satisfy the linear equations

k0 þ 2
XM
m¼1

Xd
j0¼0

mj0kj0 ¼ b0;
2
XM
m¼1

Xd
j0¼0

mjþj0kj0 ¼ bj; ð19Þ

where the bj are defined in Eq. (10). We always use the same size stencils for L̂ðsÞ and L̂ð0Þ.
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2.4. Numerical examples

In this section, we summarize the approach, give some examples of the stencil radii M required for a
given discretization ratio s ¼ Dt=Dx and degree d, and show measures of discretization error.

Before getting into examples, a special aspect of the 1 + 1 dimensional wave equation should be reviewed.

In one space dimension, the operator LDt is trivial:

LDtwðx; 0Þ ¼ cosh Dt
o

ox

� �
wðx; 0Þ ¼ 1

2
½wðxþ Dt; 0Þ þ wðx� Dt; 0Þ�: ð20Þ

Thus, if we choose an integral value of s, the discrete representation L̂ will also be trivial. Another way to

put this is that any solution of the wave equation obeys

wðx; t þ DtÞ þ wðx; t � DtÞ ¼ wðxþ Dt; tÞ þ wðx� Dt; tÞ: ð21Þ

For noninteger s however, L̂ will be the sum of two high-order interpolators, because the point xþ Dt
will lie between lattice points. Our examples use noninteger s, to avoid the complete absence of discreti-

zation error. In higher dimensions, of course, the discretization of L is not so trivial for any s. With

noninteger s, our one dimensional examples behave very much like those with any s in higher dimensions.
The discretization recipe is straightforward:

1. Choose the desired degree d and lattice ratio s ¼ Dt=Dx.
2. Find the minimum discretization radius M such that the stability conditions Eq. (15) are satisfied.

In Table 1 we list the minimum stencil radii for s ¼ 1=2; 3=2 and 26 d 6 8. For s ¼ 1=2, the stencil

are of minimum size to achieve the discretization order. For s ¼ 3=2 and d ¼ 2, the stencil is of

minimum size to cover the past light cone. In these cases the system of Eq. (10) is square, and L̂0 is the

identity matrix, which is to say there is no filtering of the field at the earliest (t � Dt) time step. For

higher order, the minimum stencil size grows not much faster than for s ¼ 1=2.
The convergence of the discretization is examined by computing the deviation from the exact solution

wðx; tÞ ¼ cos 2pðx� tÞ: ð22Þ

Tabulations of the integral of the square of the error as a function of the number N of discretization

points used are given for various orders of discretization, s ¼ 1=2; 3=2 in Tables 2 and 3. All calculations

were done in machine precision (64 bit reals). Numbers smaller than 10�16 appear because of the squaring

of the error. The domain of propagation is 06 x6 1 and N time steps are used, so that the solution is

computed up to t ¼ s. The convergence values given in the tables is p, determined by the fit of the integrated

square error �2k ¼ cN�p for the range of N . All discretizations were verified to be stable by running for
thousands of time steps from white noise initial conditions and monitoring

R
wðx; tÞ2 dx. Besides showing
Table 1

Minimum stencil radii, M , needed for stability

d s ¼ 1=2 s ¼ 3=2

2 1 2

4 2 4

6 3 5

8 4 6

The size of the stencil is 2M þ 1.



Table 3

Integrated square error at t ¼ s ¼ 3=2 (N steps) for equally spaced points, periodic BCs

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

8 8.1� 10�2 3.1� 10�2 1.4� 10�3 4.8� 10�5

16 5.4� 10�3 1.8� 10�4 5.1� 10�7 1.2� 10�9

24 1.1� 10�3 7.4� 10�6 4.2� 10�9 2.0� 10�12

32 3.4� 10�4 7.6� 10�7 1.4� 10�10 2.1� 10�14

40 1.4� 10�4 1.3� 10�7 9.6� 10�12 5.8� 10�16

Convergence 4.0 7.7 11.7 15.6

Table 2

Integrated square error at t ¼ s ¼ 1=2 (N steps) for equally spaced points, periodic BCs

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

8 1.9� 10�3 1.0� 10�5 8.8� 10�8 9.4� 10�10

16 1.2� 10�4 4.2� 10�8 2.4� 10�11 1.7� 10�14

24 2.3� 10�5 1.6� 10�9 1.9� 10�13 2.7� 10�17

32 7.2� 10�6 1.7� 10�10 6.0� 10�15 2.7� 10�19

40 2.9� 10�6 2.8� 10�11 4.1� 10�16 7.7� 10�21

Convergence 4.0 8.0 11.9 15.9
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the expected high-order convergence, these tables show the value of high-order discretization: for both

values of s the N ¼ 8, d ¼ 8 results are better than those for N ¼ 40, d ¼ 2.
3. Propagation near boundaries

The propagation formula Eq. (2) is valid anywhere in the propagation region, however if one tried to
apply the ‘‘bulk’’ discretization near the boundaries, one would have to effectively evaluate the field outside

of the propagation region. AGH called different ways of thinking of this: ‘‘Quadrature Schemes’’, ‘‘In-

terpolation Schemes’’, and ‘‘Extrapolation Schemes’’. In the end, it comes down to some discretization of

Eq. (2) that uses field values only in the propagation region.

It seems as if the proper definition of the operator LDt for field points less than Dt from the boundary

might depend on the BCs. Nevertheless, we discretize this operator without regard to any BCs, using

(again) the formula for monomials, Eq. (8). Near boundaries, we also might choose to have an irregular

mesh. We call the points for which we use an ‘‘individually computed’’ discretization of L ‘‘border points’’.
For each of these
ðLDtwÞðyÞ �
X

neighbors x

L̂ðy; xÞwðxÞ: ð23Þ

In general, the size of the discretization (the number of points x for which L̂ðy; xÞ is nonzero) need not be

equal to that in the bulk (2M þ 1), or even to that for other border points y. Nevertheless, we have found
that that we can achieve stability by using the same number of neighboring points in the border as in the

bulk, for both completely regular meshes and those with points spaced more closely near the boundaries.
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4. Enforcement of boundary conditions

As we said, a key feature of our method is independent discretization of the propagation and the BCs. We
enforce BCs by applying a projection operator after each use of the stepping formula Eq. (5). The BCs are

expressed as linear constraintsX
j

bijwðxjÞ ¼ ci: ð24Þ

We present numerical results for both homogeneous BCs (ci ¼ 0) and inhomogeneous BCs. Results are

substantially similar. The BCs are enforced by applying the projection operation

wj  �wj � wj þ
X
i

aibij; ð25Þ

where the coefficients ai are determined by solution of the linear equations

X
i0

X
j

bijbi0j

 !
ai0 ¼ ci �

X
j

bijwj: ð26Þ

In practice, one does a decomposition (e.g. LU) of the coefficient matrix
P

j bijbi0j as a precomputation so

that the equations can be solved efficiently at each time step.
4.1. Dirichlet boundary conditions

If there is a field discretization point xi exactly on the boundary, the homogeneous Dirichlet BC is

simply wi ¼ 0, and the part of the projection operation corresponding to that BC would seem to be

simply setting that field value to zero. If xi is not on the boundary, then bij would be the coefficients of

a high-order extrapolation operator from the field points xj to the boundary points xi.
Our first attempt at this approach used only two boundary constraints of the form Eq. (24). The results

were almost always unstable. The solution to this turned out to be very simple. If we want the numerical

evolution to be locally exact for polynomials up to degree d we must enforce not only wðxiÞ ¼ 0, but also

ol

otl
wðxi; tÞ ¼ 0; l ¼ 0; . . . ; d: ð27Þ

In our formulation, the odd time derivatives are implicitly enforced by the application of the BC pro-
jection operator at the previous two time steps. For even l, we use

ol

otl
wðxi; tÞ ¼

ol

oxl
wðxi; tÞ: ð28Þ

For nonzero l, the coefficients of the discretized boundary condition bij are thus (usually extrapolative)
high-order discretization of

o2

ox2

� �l=2

wðxi; tÞ:

In all cases we use the same discretization criteria as before – the coefficients are determined by the

requirement that the discretization be exact for polynomial w up to degree d.
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The BCs for higher derivatives of the field should not be regarded as ‘‘additional’’ or ‘‘extra’’. After all,

to get an error that is proportional to a high power of Dt, one must make sure that boundary condition is

obeyed to that order.
4.2. Neumann boundary conditions

Neumann BCs are handled in the analogous fashion, the coefficients bij being the extrapolative high-

order discretization of

ol

oxl
wðxi; tÞ;

for odd l.
4.3. Computation of boundary conditions coefficients

This is done exactly like the propagation operator. We minimizeX
j

b2ij;

subject to the constraints that

dl

dxl
ðx� xiÞk

����
x!xi

¼
X

bijðx� xiÞk; ð29Þ

for all required values of l and k.
5. Optional modification for unequally spaced points

The discretization criteria used for discretization of both the propagation operators and the boundary

condition vectors can be summarized as minimization ofX
j

A2
j ;

subject to the linear constraintsX
j

AjfkðxjÞ ¼ rk; ð30Þ

where fAjg is the discretization of some linear operator which gives the result rk when acting on a function

f ðxÞ: Z
dxAðxÞfkðxÞ ¼ rk: ð31Þ

The quantity being minimized corresponds to an trapezoidal-rule approximation to the integral of A2ðxÞ.
It seems natural, in the case of unequally spaced points, to generalize the criteria to minimized the weighted

sum of squares
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X
j

wjA2
j ;

where fwjg are the weights for a quadrature rule having abscissae at the points xj. The solution then

becomes

Aj ¼
1

wj

X
k

kkfkðxjÞ; ð32Þ

where the kk solve

X
k0

X
j

1

wj
fkðxjÞfk0 ðxjÞ

" #
kk0 ¼ rk: ð33Þ

Since the result will usually depend relatively weakly on the quadrature weights wj, it does not seem

necessary that a highly accurate rule be used, unless, of course, one actually needs to approximate an in-

tegral. In the examples presented in the next section, quadrature weights are used as described in the case of

unequally spaced points. The answers were found to be somewhat better than using wj ¼ 1, although both

were stable and had the expected rate of convergence.
6. Numerical examples

We exhibit convergence results for both homogeneous and inhomogeneous BCs.
6.1. Homogeneous boundary conditions

We solved the wave equation with mixed homogeneous BCs: Dirichlet at one end (x ¼ 0) and Neumann

at the other (x ¼ 1Þ. We computed the error by deviation from the exact solution

wðx; tÞ ¼ sin
3p
2
x cos

3p
2
t: ð34Þ

Solutions were computed with various orders of discretization with s ¼ 1=2; 3=2. We show results for

both equally spaced points and for meshes that are tapered near the boundaries. The order of convergence

is exhibited by the dependence of the integrated square error on the number N of discretization points used.

The convergence values given in the tables is p, determined by the fit of the integrated square error

�2k ¼ cN�p for the range of k. All discretizations were verified to be stable by running for thousands of time

steps from white noise initial conditions and monitoring
R
wðx; tÞ2 dx.

In all the numerical examples, the radius of the stencil, M , is determined solely by the degree of the

method. Even when points are not equally spaced, the values of M are given by Table 1.
6.1.1. Equally spaced points

The results for s ¼ 1=2 are shown in Table 4. The results for s ¼ 3=2 are shown in Table 5. These ex-

amples were run from t ¼ 0 to 1, so that the number of time steps was N=s. Both sets of data demonstrate

good convergence, pP 2d. The superior efficiency of high-order discretization is again apparent, in both

cases the coarsest discretization with d ¼ 8 is more accurate than the finest discretization with d ¼ 2 (see
Table 6).



Table 4

Integrated square error after N=s time steps for equally spaced points, s ¼ 1=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

12 2.4� 10�4 9.9� 10�6 2.1� 10�7 6.2� 10�9

24 1.6� 10�5 3.2� 10�9 1.1� 10�11 2.7 � 10�14

36 3.2� 10�6 4.1� 10�11 1.9� 10�14 1.3 � 10�17

48 1.0� 10�6 2.1� 10�12 2.6� 10�16 5.3 � 10�20

60 4.2� 10�7 2.7� 10�13 9.0� 10�18 6.7 � 10�22

72 2.0� 10�7 5.8� 10�14 5.0� 10�19 2.2 � 10�23

84 1.1� 10�7 1.6� 10�14 4.2� 10�20 1.2 � 10�24

Convergence 4.0 10.4 15.0 18.7

Table 5

Integrated square error after N=s time steps for equally spaced points, s ¼ 3=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

18 1.4� 10�3 1.8� 10�4 1.8� 10�6 1.3� 10�8

36 2.6� 10�5 5.7� 10�8 8.5� 10�11 4.5� 10�14

54 4.3� 10�6 7.3� 10�10 2.1� 10�13 1.9� 10�17

72 1.3� 10�6 4.9� 10�11 3.2� 10�15 8.3� 10�20

90 5.0� 10�7 7.1� 10�12 1.3� 10�16 1.3� 10�21

108 2.4� 10�7 1.5� 10�12 9.9� 10�18 4.7� 10�23

126 1.2� 10�7 4.3� 10�13 1.2� 10�18 2.8� 10�24

Convergence 4.7 10.2 14.5 18.6
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6.1.2. Unequally spaced points

The test with unequally spaced points near the boundaries used abscissae derived from Gauss Legendre

quadrature rules. The unequally spaced points and the associated weights are tabulated in Table 6, as-

suming the last equally spaced point is x0 ¼ 0. The equally spaced points are separated by a unit length,

with unit weights. The first point in the tapered set is placed at 1. The same point spacing and weights are

used on both ends (which have different BCs). The BCs are enforced at locations tabulated in the column

labeled ‘‘Endpoint.’’ The resulting abscissae are mapped into the interval 0 < x < 1. So that each case runs
over the same time interval (06 t6 1), s, the ratio Dt=Dx (in the regular part of the mesh) varies somewhat.

Specifically, after choosing a nominal s0, the number of time steps is given by Nt ¼ N=s0, and then

Dt ¼ 1=Nt. The resulting ss approach s0 from below as N increases. In other words, s0 is the ratio of Dt to
the average of Dx over the mesh. Tabulations of the integrated square error and the approximate con-

vergence rate are given in Table 7 for s ¼ 1=2 and in Table 8 for s ¼ 3=2.
For the case d ¼ 8; s0 ¼ 3=2;N ¼ 18, the ratio of Dt to minimum point spacing is �7.58. The degree to

which this apparently violates the Courant–Friedrichs–Lewy constraint Dt=Dx6 1 without losing stability

demonstrates its utility, because it allows fine discretization near boundaries. Of course, more generally, one
could regard the discretization as consistent with the CFL constraint in the sense that there are always

points in the stencil outside the past light cone.

The use of a tapered mesh near the boundaries only results in less error for high discretization orders and

fine discretization. This does not mean that tapered meshes in higher dimensions will not be useful – in one

space dimensions there is no need to resolve more detail at the boundaries.



Table 6

Abscissae and weights for points near boundary

Stencil radius M Endpoint Abscissae xj Weights wj

1 2.595389 2.453886 0.3589914

1.885491 0.755935

1.000000 0.9804617

2 3.858537 3.770901 0.2239182

3.405347 0.5019379

2.781822 0.7358097

1.955575 0.9043423

1.000000 0.9925291

3 5.127275 5.063807 0.1625074

4.796124 0.3709135

4.327688 0.5622999

3.680294 0.7274223

2.884197 0.8585373

1.976621 0.9495098

1.000000 0.9960851

4 6.397964 6.348216 0.1274905

6.137416 0.2932146

5.764537 0.4507562

5.240223 0.5953526

4.579545 0.7228262

3.801508 0.8295069

2.928494 0.9123247

1.985616 0.9688968

1.000000 0.9975957

5 7.669561 7.628656 0.1048763

7.454908 0.2421512

7.145873 0.3749203

6.707496 0.5004101

6.148301 0.6161636

5.479169 0.7199254

4.713124 0.8096750

3.865075 0.8836655

2.951530 0.9404565

1.990268 0.9789427

1.000000 0.9983748

6 8.941655 8.906923 0.08907104

8.759192 0.2061271

8.495590 0.3204653

8.119757 0.4303203

7.636963 0.5341377

7.053982 0.6304578

6.378998 0.7179281

5.621487 0.7953204

4.792081 0.8615482

3.902424 0.9156818

2.965004 0.9569613

1.992981 0.9848072

1.000000 0.9988285
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Table 9

Integrated square error after N=s0 time steps for tapered mesh with inhomogeneous BCs, s0 ¼ 1=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

12 2.7� 10�3 5.7� 10�3

24 1.4� 10�4 2.3� 10�6 5.4� 10�10 1.3� 10�11

36 2.6� 10�5 2.8� 10�8 8.0� 10�13 2.4� 10�15

48 7.9� 10�6 1.4� 10�9 8.2� 10�15 6.9� 10�18

60 3.2� 10�6 1.4� 10�10 2.4� 10�16 1.8� 10�19

72 1.5� 10�6 2.3� 10�11 1.4� 10�17 4.8� 10�20

84 8.1� 10�7 5.0� 10�12 1.2� 10�18

96 1.4� 10�19

Convergence 4.2 10.7 15.9 18.2

Table 7

Integrated square error after N=s0 time steps for tapered mesh, s0 ¼ 1=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

12 4.6� 10�4 8.7� 10�5

24 2.2� 10�5 2.3� 10�8 8.3� 10�12 1.8� 10�14

36 4.0� 10�6 2.9� 10�10 8.2� 10�15 2.4� 10�18

48 1.2� 10�6 1.6� 10�11 6.8� 10�17 5.9� 10�21

60 4.7� 10�7 1.8� 10�12 1.7� 10�18 6.8� 10�23

72 2.2� 10�7 3.2� 10�13 8.0� 10�20 1.9� 10�24

84 1.2� 10�7 7.5� 10�14 5.9� 10�21 2.2� 10�25

96 6.7� 10�22 7.8� 10�27

Convergence 4.2 10.7 16.7 20.2

Table 8

Integrated square error after N=s0 time steps for tapered mesh, s0 ¼ 3=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

18 5.1� 10�3

36 1.3� 10�4 1.6� 10�8 7.5� 10�13 3.6� 10�14

54 1.6� 10�5 3.3� 10�10 9.2� 10�16 3.9� 10�18

72 3.6� 10�6 3.0� 10�11 6.0� 10�17 9.1� 10�21

90 1.2� 10�6 4.9� 10�12 5.0� 10�18 1.0� 10�22

108 5.0� 10�7 1.1� 10�12 6.1� 10�19 2.8� 10�24

126 2.4� 10�7 3.3� 10�13 9.9� 10�20 9.6� 10�26

144 1.1� 10�13 2.1� 10�20 2.4� 10�27

Convergence 5.1 8.5 12.1 22.4
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6.2. Inhomogeneous boundary conditions

The application of our method to problems with inhomogeneous BCs is straightforward. In this case the

ci of Eqs. (24)–(26) do not vanish. For a numerical example, we again choose the solution

wðx; tÞ ¼ cos 2pðx� tÞ; ð35Þ

without using a cyclic mesh to establish periodic BCs. Instead we use the general BC projection technique

to enforce the correct values of r2kwðx; tÞ at x ¼ 0; 1 with k ¼ 0; . . . ; d=2, where d is the degree of the



Table 10

Integrated square error after N=s0 time steps for tapered mesh with inhomogeneous BCs, s0 ¼ 3=2

N d ¼ 2 d ¼ 4 d ¼ 6 d ¼ 8

18 7.6� 10�2

36 2.3� 10�3 3.4� 10�6 2.0� 10�9 2.1� 10�11

54 2.4� 10�4 4.8� 10�8 3.6� 10�12 3.1� 10�15

72 4.9� 10�5 2.9� 10�9 5.7� 10�14 7.3� 10�18

90 1.5� 10�5 3.6� 10�10 2.5� 10�15 3.7� 10�19

108 5.9� 10�6 6.9� 10�11 2.1� 10�16

126 2.7� 10�6 1.7� 10�11 2.6� 10�17

140 5.4� 10�12 4.4� 10�18

Convergence 5.3 9.6 14.3 19.8
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discretization. (This is an inhomogeneous Dirichlet BC.) Results are stable with the same parameter values

and tapered mesh as those of Section 6.1.2. Results are tabulated in Tables 9 and 10. Errors are somewhat

larger than the results with homogeneous BCs, but the convergence rates are comparable.
7. Conclusions

The results presented here constitute an encouraging validation of AGH [1]. They show high-order

convergence with stability that is not spoiled by the presence of small cells near the boundary. No other

approach to discretization of the wave equation has achieved this. The results also clearly exhibit the

dramatic superiority in efficiency of high-order discretization which motivated this work. The method is

formulated in a way that is straightforward to implement in any number of dimensions. A companion

paper will demonstrate similar results in 2+ 1 dimensions. The results also raise more questions than they

answer. In this section we list some obvious directions for continued research.

7.1. Theorems on stability and convergence

Although we have demonstrated stable high-order examples, we do not know the general conditions for

this behavior. We have not even proved that the overall high-order convergence is not spoiled by the in-

terleaving of propagation step with boundary condition projection.

7.2. First order formulation

We have taken the Lax–Wendroff approach that relates the fields at three time slices and uses only the

field as the dynamic variable. It is clear that the same approach can be used to generalize the formulation

that relates the field and its first time derivative at two time slices:

wð~x;DtÞ ¼ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
wð~x; 0Þ þ Dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDtÞ2r2

q sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
_wð~x; 0Þ; ð36Þ
_wð~x;DtÞ ¼ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
_wð~x; 0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
Dt

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDtÞ2r2

q
wð~x; 0Þ: ð37Þ

As before, one need not worry about any branch cuts, because the power series for the operators contain

only integer powers of ðDtÞ2r2.
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7.3. Efficiency analysis

Study is needed to gain insight as to the most efficient way to solve particular problems to a desired
accuracy. Some obvious issues are listed in this section.
7.3.1. Parameter selection

For the solution to a given problem with a desired accuracy, it would be good to have justifiable pro-

cedure for selection of the many numerical parameters, including

• discretization density,

• degree of approximation, and

• time step.
7.3.2. Balance of precomputation with propagation computation

As in frequency domain computations, there will be some tradeoffs between precomputation and so-

lution. For large problems, precomputation will be dominated by the discretization of the border propa-

gation, the boundary constraints, and the decomposition of the coefficient matrix
P

j bijbi0j which appears

in Eq. (26). Because of its local structure, this decomposition can be accelerated by employing nested

dissection [2].
7.4. Use of ‘‘wave discretization’’

For frequency domain problems, the use of discretizations that are specified by minimization of RMS

error over some spectrum of sin waves (rather than exactitude for low-order polynomials) results in more

efficient calculation for a given accuracy. It seems likely that the same will apply to time domain problems.

This should be investigated.
7.5. Nonuniform border points

We have shown that use of a tapered mesh near the boundary does not prevent stability and can result in

smaller discretization error, even in one dimension which might be thought to be of marginal utility. How

to best taper the mesh should be studied.
7.6. Summary

We have shown here that, in 1 + 1 dimensions, good results can be obtained with all points evenly
spaced, or with a tapered mesh near the boundary. We do not know how to optimize the placement of

border points, however using the abscissae of reasonable quadrature rule near the boundary works

somewhat better that equally spaced points.
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